A note on nonnegative diagonally dominant matrices
نویسنده
چکیده
منابع مشابه
On Nonnegative Factorization of Matrices
It is shown that a sufficient condition for a nonnegative real symmetric matrix to be completely positive is that the matrix is diagonally dominant.
متن کاملConditions for separability in generalized Laplacian matrices and nonnegative matrices as density matrices
Recently, Laplacian matrices of graphs are studied as density matrices in quantum mechanics. We continue this study and give conditions for separability of generalized Laplacian matrices of weighted graphs with unit trace. In particular, we show that the Peres-Horodecki positive partial transpose separability condition is necessary and sufficient for separability in C2 ⊗ C. In addition, we pres...
متن کاملA New Class of Inverse M-Matrices of Tree-Like Type
In this paper, we use weighted dyadic trees to introduce a new class of nonnegative matrices whose inverses are column diagonally dominant M -matrices.
متن کاملEla M ∨ - Matrices : a Generalization of M - Matrices Based on Eventually Nonnegative Matrices
An M ∨-matrix has the form A = sI − B, where s ≥ ρ(B) ≥ 0 and B is eventually nonnegative; i.e., B k is entrywise nonnegative for all sufficiently large integers k. A theory of M ∨-matrices is developed here that parallels the theory of M-matrices, in particular as it regards exponential nonnegativity, spectral properties, semipositivity, monotonicity, inverse nonnegativity and diagonal dominance.
متن کاملMv-matrices: a generalization of M-matrices based on eventually nonnegative matrices
An M∨ matrix has the form A = sI − B, where s ≥ ρ(B) ≥ 0 and B is eventually nonnegative; i.e., Bk is entrywise nonnegative for all sufficiently large integers k. A theory of M∨ matrices is developed here that parallels the theory of M-matrices, in particular as it regards exponential nonnegativity, spectral properties, semipositivity, monotonicity, inverse nonnegativity and diagonal dominance.
متن کامل